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Abstract 

The next generation of network-centric applications will utilize a large number of comput- 
ing and storage systems that are connected by global high speed networks. We refer to the 
environment that provides transparent computing and communication services for large 
scale parallel and distributed applications as Metacomputing environment. In this project, 
we present the design and the experimental results with the Virtual Distributed Comput- 
ing Environment (VDCE) and the Adaptive Distributed Virtual Computing Environment 
(ADViCE) being developed at The University of Arizona and Syracuse University. 

The VDCE provides an efficient web-based approach for developing, running, evaluat- 
ing and visualizing large-scale parallel and distributed applications that utilize computing 
resources connected by local and/or wide area networks. The VDCE task libraries re- 
lieve end-users of tedious task implementations and also support reusability. The VDCE 
software architecture is described in terms of three modules: a) the Application Editor, a 
user-friendly application development environment that generates the Application Flow 
Graph (AFG) of an application; b) the Application Scheduler, which provides an efficient 
task-to-resource mapping of AFG; and c) the VDCE Runtime System, which is responsible 
for running and managing application execution and for monitoring the VDCE resources. 
We present experimental results of an application execution on the VDCE prototype for 
evaluating the performance of different machine and network configurations. We also 
show how VDCE can be used as a problem-solving environment on which large-scale, 
network-centric applications can be developed by a novice programmer rather than by an 
expert in low-level details of parallel programming languages. 

The ADViCE which is an extension of the VDCE aims at supporting mobile com- 
puting and communication resources. ADViCE supports a transparent access to the 
development, computing and communication services that are offered regardless whether 
the users are connected through fixed or mobile networks. In addition, the ADViCE 
resources can also be connected through mobile as well as fixed networks. The AD- 
ViCE architecture consists of two independent servers: Visualization and Editing Server 
(VES) and Control and Management Server (CMS). These two servers provide all the 
services required in an efficient parallel and distributed programming environment. The 
ADViCE services include Application Editing Service, Application Visualization Service, 
Application Resource Service, Application Management Service, Application Control Ser- 
vice and Application Data Service. We also present the experimental results to evaluate 
the performance and effectiveness of the ADViCE prototype to provide three important 
functions: 1) Evaluation Tool: to analyze the the performance of parallel applications 
with different machine and network configurations; 2) Problem-Solving Environment: 
to assist in the development of large scale parallel and distributed applications, and 3) 
Application-Transparent Adaptivity: to allow parallel and distributed applications to run 
in a transparent manner when their clients and resources are fixed or mobile. 

1    Introduction 

Grand challenge problems have computational and storage resource requirements that 
are beyond the capacities of a single computing environment. Additionally, emerging net- 



work technologies such as fiber-optic transmission facilities and the Asynchronous Transfer 
Mode (ATM) enable data to be transferred at the rate of a gigabit per second (Gbps). 
Since high-speed networks have become more common and provide low latency commu- 
nication services that are close to those offered by massively parallel processors (MPPs), 
there is a growing interest in combining the computational and storage resources that 
are available over the wide area networks to build a new execution environment called 
metacomputing [21]. New software tools and techniques are required to utilize the meta- 
computing resources, which are not fully supported by existing parallel or distributed 
software. The heterogeneous and dynamic nature of a metacomputing environment lim- 
its the use of existing parallel computing tools; similarly, the existing distributed systems 
may not provide the high performance that is a key target in a metacomputing environ- 

ment. 

In this report we present the design of the Virtual Distributed Computing Environ- 
ment (VDCE) currently that has been developed at Syracuse University. In addition, 
we also present the design and the experimental results of the Adaptive Distributed Vir- 
tual Computing Environment (ADViCE) which is an extension of the VDCE to support 
mobile computing and communication resources. 

VDCE [8, 9] provides an efficient mechanism to execute large-scale applications on 
distributed and diverse platforms. The main goal of the VDCE project is to develop an 
easy-to-use, integrated software development environment that provides software tools 
and middleware software to handle all the issues related to developing parallel and dis- 
tributed applications, scheduling tasks onto the best available resources, and managing 
the Quality of Service (QoS) requirements. 

VDCE is a three-tiered software architecture that consists of an Application Edi- 
tor to assist in application development and specification, an Application Scheduler to 
perform transparent application scheduling and resource configuration, and a VDCE Run- 
time System to run and manage the application execution. The Application Editor is a 
web-based graphical user interface that helps users to develop parallel and distributed 
applications. In VDCE the application development process is based on a dataflow pro- 
gramming paradigm. The Application Editor generates its output in terms of an Applica- 
tion Flow Graph (AFG) in which the nodes represent task computations and links denote 
communication and/or synchronization among the nodes (tasks). The Application Editor 
provides menu-driven, functional building blocks of task libraries. A node of an AFG is 
a well-defined function or task selected from a given task library. VDCE provides a large 
set of task libraries grouped in terms of their functionality, such as matrix operations, 
Fourier analysis, C3I (command, control, communication, and information) applications, 

etc. 

VDCE provides a distributed runtime scheduler, the Application Scheduler, which 
provides efficient task-to-resource mapping of application flow graphs. The Application 
Scheduler uses performance prediction of individual tasks to achieve efficient resource allo- 
cations. The schedule decision is based on the task specifications (i.e., hardware/software 
requirements) in the application flow graph, locations and configurations of resources, and 
up-to-date resource loads. The VDCE Runtime System consists of two parts: the Control 
Virtual Machine (CVM), and the Data Virtual Machine (DVM). The CVM is responsible 



for monitoring the VDCE resources, setting up the execution environment for a given 
application, monitoring the execution of the application tasks on the assigned computers, 
and maintaining the performance, fault tolerance, and quality of service (QoS) require- 
ments. The DVM is responsible for providing low latency and high-speed communication 
and synchronization services for inter-task communications. 

The main goal of the ADViCE project is to extend the current VDCE to support 
mobile users and resources. ADViCE provides a parallel and distributed programming 
environment; it provides an efficient web-based user interface that allows users to develop, 
run and visualize parallel/distributed applications running on heterogeneous computing 
resources connected by wired and wireless networks. Consequently, the fact that some of 
the resources are mobile such as users, computers, storage devices and networks become 
transparent to the users and the application developers. 

The rest of the report is organized as follows. Section 2 is a summary of the related 
work. In Section 3 we present the design and implementation issues of the VDCE software 
architecture. Section 4 presents experimental results and evaluation of the current VDCE 
prototype. Section 5 presents the architecture and experimental results with ADViCE. 
Section 6 presents Concluding remarks and future work. 

2    Related Work 

In this section we provide a review of related work on the software development process, 
followed by related work on metacomputing. The software development process of par- 
allel and distributed applications can broadly be described in terms of three phases: a) 
application design and specification, b) application scheduling and resource configuration, 
and c) application execution and runtime. 

In a well-integrated execution environment it is important to provide: a) an easy-to- 
use interactive user-interface to design and specify parallel distributed applications and, 
b) well-developed graphical utilities for visualization of results and program behavior. 
Generally, writing parallel/distributed programs overwhelms users due to the difficulty 
of explicitly expressing communication and synchronization among the computations [7]. 
A graph-based programming environment, in which a program is defined as a directed 
graph where nodes denote computations and links denote communication and synchro- 
nization between nodes, may be used to decrease the work of programmers. Currently, 
there are a few visual parallel programming languages and environments, such as Compu- 
tationally Oriented Display Environment (Code) [11], Heterogeneous Network Computing 
Environment (HeNCE) [12], and Zoom [13]. To develop a Code or HeNCE application, a 
programmer first expresses the sequential computations in a standard language and then 
specifies how they are to be composed into a parallel program. Zoom is a hierarchical 
representation abstraction for describing heterogeneous applications. Zoom representa- 
tion of an application can be translated into a HeNCE program for execution [12]. On 
the other hand, application development tools and environments are being modified to 
support web-based user interfaces, since the World Wide Web is becoming a low-cost, 
standard interface mechanism with which to access the computational resources that are 



distributed all over the world [29]. 

After a parallel/distributed application is developed, the tasks of the application are 
assigned to the available resources. In the literature, although the task scheduling (or 
resource allocation) problem has been investigated extensively, most of the algorithms 
and systems are valid only for specific architectures and/or applications. One of the few 
research groups targeted on a general scheduling framework is the APPLeS [14] group. 
APPLeS proposes application-level scheduling in which everything about the system is 
evaluated in terms of its impact on the application. APPLeS develops a customized sched- 
ule for each application by including user-specific, application-specific, system-specific, 
and dynamic information in its scheduling decision. The Network Weather Service com- 
ponent provides dynamic information. The Heterogeneous Application Template provides 
specific information about the structure of the application. User-supplied information is 
entered into the system with a user-specification file. There are resource management 
systems to provide load sharing and resource allocation, one of which, developed at the 
University of Wisconsin, is the Condor [31] project, a distributed batch system for sharing 
the workload of compute-intensive jobs in a pool of UNIX workstations connected by a 
network. 

The application execution and runtime phase executes the developed and configured 
application and produces the required output. This stage integrates the assigned re- 
sources that will be involved in execution and supports inter-module communications, 
which are based on either a message-passing tool such as PVM [23], P4 [25], MPI [24], 
and NCS [26] or on a distributed shared memory (DSM) model. During the execution of 
the application this stage accepts data from different computing elements and combines 
them for proper visualization. It intercepts the error messages generated and provides 
proper interpretation. Some of these message-passing tools may be used in a metacom- 
puting environment, although they were initially developed for parallel and distributed 
applications. In the first I-WAY metacomputing testbed, Nexus and MPI communica- 
tion libraries were used within the prototype implementations of Globus communications. 

In addition, there are a few projects targeted toward providing a metacomputing envi- 
ronment on diverse resources. The earliest metacomputer, the NCSA Metacomputer [27], 
was an integration of several MPPs, mass storage units, visualization and I/O devices. 
Globus [21] and Legion [28] are among the most recent projects targeted toward solv- 
ing metacomputing problems. A low-level toolkit in the Globus environment provides 
mechanisms such as communication, authentication, and network information. These 
mechanisms can be used to construct higher-level metacomputing services such as paral- 
lel programming tools, schedulers, etc. On the other hand, Legion is a distributed-object 
metacomputing environment that is targeted to support a wide set of tools, languages, 
and programming models. The major objectives of the Legion project are site autonomy, 
an easy-to-use seamless computational environment, high performance via parallelism, 
security for users and resource owners, management and exploitation of resource hetero- 
geneity, multiple language support and interoperability and fault tolerance. Additionally, 
there are several web-based metacomputing projects [29], that either use the JAVA pro- 
gramming language as the main computation language or provide a coordination medium 
based on WWW technologies or the JAVA language. There may be some drawbacks to 



these methods. First, they may not support the programs written in other languages such 
as C and Fortran. Second, they may support communication only between a server and 
a client, which restricts the execution of the candidate applications. 

3    Overview of VDCE Software Architecture 

The main design philosophy of VDCE is to provide a general software development en- 
vironment to build and execute large-scale applications on a network of heterogeneous 
resources. VDCE is composed of geographically distributed computation sites (domains), 
as shown in Figure 1, each of which has one or more VDCE Servers. The words "site" 
and "domain" are used interchangeably in this paper. Each domain consists of several 
clusters, each of which includes heterogeneous resources in terms of type, speed, or the 
configuration. At each site the VDCE Server runs the server software, called site manager, 
which handles inter-site communications and bridges VDCE modules to the web-based 
site repository. The site manager is part of the Control Virtual Machine that was ex- 
plained in Section 3.3. 

SpedaiPurptxe 
Architecture Storage SyÄem      VDCE Siu 

Figure 1: Virtual Distributed Computing Environment (VDCE) 

The site repository consists of four different database tables. The user-accounts ta- 
ble is used to handle user authentication. In the user-accounts table, each VDCE user 
account is represented by a 5-tuple: user name, password, user ID, priority, and access 
domain type. The resource-performance table provides the resource (machine and net- 
work) performance attributes/parameters. These attributes are grouped into two parts: 
a) static performance attributes stored in the database once during the initial configu- 
ration of VDCE: host name, IP address, architecture type, operating system type, and 
total memory size, the computing weight (which will be described later in the Application 
Scheduler section) of each processor with respect to a base processor; and b) dynamic per- 
formance attributes that are updated periodically: CPU load, network latency, network 
bandwidth, and available memory size, number of processes, etc. The task-performance 
table provides performance characteristics for each task in the system and is used to 



predict the performance of the task on a given resource. Each task implementation is 
specified by some parameters: computation size, communication size, and required mem- 
ory size. For each task in VDCE, the task-performance table includes an entry for the 
measured execution time of benchmarking the task per machine type as well as the CPU 
loads when the measurements are taken. In order to find the location of a task's exe- 
cutable, VDCE stores location information of each task (i.e., the absolute path of the 
task executable) as well as other restrictions that might be related to the task execution 
for each host in the task-constraints table. Due to specific library requirements or other 
license restrictions, some task executables may reside only on a subset of the VDCE hosts. 
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Figure 2: Interactions Among the VDCE Modules 

The software development cycle for network applications can be viewed in terms of 
three phases: application development and specification phase, application scheduling 
and configuration phase, and execution and runtime phase. The functionality of these 
three phases is handled by the Application Editor, Application Scheduler, and VDCE 
Runtime System, respectively. Figure 2 shows the interaction of the VDCE modules 
within a site. In the following subsections we describe in detail the design and prototype 
implementation issues of the three main software modules. 

3.1    Application Editor 

The Application Editor is a web-based graphical user interface for developing parallel 
and distributed applications. The end-user establishes a URL connection to the VDCE 
Server software within the site (the Site Manager), which runs on a VDCE Server (see 
Figure 3). The Site Manager implementation is based on JAVA Web server technology, 
which uses servlets (i.e., server site JAVA applets) that relive the startup overheads and 
run on any platform. After user authentication (as shown in Figure 3), the Application 
Editor, which was implemented in JAVA, will be loaded into the user's local web browser 
so that the user can develop his/her application. 

The Application Editor provides menu-driven task libraries that are grouped in terms 
of their functionality, such as the matrix algebra library, C3I (command and control appli- 
cations) library, etc. A selected task is represented as a clickable and draggable graphical 
icon in the active editor area. Each such icon includes the task name and a set of markers 
for logical ports. Color coding used in this visual representation helps to distinguish input 
ports from output ports. Operationally, the Application Editor can be in task mode, link 
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Figure 3: VDCE Authentication Window 

mode, or ran mode. In task mode, the user can select/add new tasks, and/or click/drag 
icons to position them conveniently in the active editor area. In link mode, the user can 
specify connections between tasks. In run mode, Editor submits the graph for execution 
and visualizes the performance and runtime characteristics of an ongoing computation. 

The process of building a VDCE application with the Application Editor can be di- 
vided into two steps: building the application flow graph (AFG), and specifying the task 
properties of the application. The application flow graph is a directed acyclic graph, 
G = (T, L), where T is the set of tasks in the application and L is a set of directed 
links among tasks. A directed link (i,j) between two tasks, Ti and Tj, of the application 
indicates that Tj must complete its execution before Tj begins to run. Figure 4 shows 
the application flow graph of a Linear Equation Solver (based on LU Decomposition) 
developed using the Application Editor. In this application, the problem is to find the 
solution vector a; in an equation Ax = b, where A is a known N x N matrix and 6 is a 
known vector. With LU Decomposition, any matrix can be decomposed into the product 
of a lower triangular matrix L and upper triangular matrix U. Once LU Decomposition 
is solved, the solution vector, x, is derived with x = C-1(L_16). To construct the flow 
graph of this application, the user creates nodes by selecting LU_Decomposition, Ma- 
trixJnverse(2), and MatrbcMultiply(2) tasks from the Matrix-Operations menu. 

After the application flow graph is generated, the next step in the application devel- 
opment process is to specify the properties of each task. A double click on any task icon 
generates a popup panel that allows the user to specify optional preferences such as com- 
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Figure 4: Building the Linear Equation Solver Application with the Application Editor 

putational mode (sequential or parallel); domain type (Syracuse University or Rome Lab); 
cluster type (HPDC cluster, CAT cluster, TOP cluster; Rome Lab Cluster); communi- 
cation type (P4, socket, MPI, DSM, NCS, PVM); thread type (none, pthread, qthread, 
cthread), communication protocol type (TCP/IP, ATM); machine type (SUN SPARC, 
RS6000, Pentium PC, HP) and the number of processors to be used in a parallel imple- 
mentation of a given task (see the right part of Figure 4). In this figure, for the MULT 
task of the Linear Equation Solver the user has selected the parallel execution mode using 
two nodes of Sun SPARC machines interconnected by an ATM network. When the task 
properties are specified the user may either submit the application for execution in the 
VDCE or store the application flow graph for future use. 

3.2   Application Scheduler 

The main function of the Application Scheduler module in VDCE is to interpret the appli- 
cation flow graph and to assign the current best available resources for running application 
tasks in order to minimize the total execution time in a transparent manner. This module 
is based on application-based scheduling framework [14,15] that is currently being imple- 
mented. VDCE provides distributed scheduling in a wide-area system in which each site 
consists of its own Application Scheduler running on the VDCE server. The Application 
Scheduler has two scheduling algorithms explained at the following pages: site scheduler 
algorithm and host selection algorithm. The schedule of an AFG is determined by the 
VDCE server at the local site, which runs the site scheduler algorithm, and a set of se- 
lected remote sites that execute the Host Selection Algorithm. Table 1 gives the meanings 
of the symbols used in the algorithms. 

The site scheduler algorithm and host selection algorithm are based on the list schedul- 
ing [16, 17, 18] heuristic. In list scheduling each node (task) of the graph is assigned a 
priority and stored in an ordered list. In this paper node and task terms are used inter- 



Table 1 
Symbols and their meanings 

Symbol Meaning 

AFG Application Flow Graph. 
Site-List The list of sites that will be part of the scheduling process. 
Siocai The site that has received the application execution request. 
Srcmote The set of selected A; neighbor sites of Siocai- 
BW(Si, Sj) The network bandwidth between sites Si and Sj. 
LT(Si, Sj) The network latency between sites Si and Sj. 
Pred-Time{taski, Sj) The best predicted execution time of taski at Sj. 
predJ,ime(taski, Pj) The predicted execution time of taski on Pj. 
EST(taski, Sj) The earliest start time of taski at site Sj. 
EFT{taski, Sj) The earliest finish time of taski at site Sj. 
Predecessor(taski) The set of nodes that are immediate predecessor of taski. 
ExecJime(taski, Ptent) The measured execution time of tasfa on Ptest for the trial run. 
C-Load(Pj) The recent CPU load of Pj. 
M-Load(PteBt) The CPU load of Ptest at the time of the trial run. 
Weight(Pj) The computing weight of Pj with respect to a base processor. 

changeably. Whenever a processor is available for execution the highest priority task in 
the list is assigned to this processor. This process is repeated until all nodes of the graph 
are covered. The difference among the list scheduling heuristics is the way in which they 
assign priorities to nodes. The different priority assignment methods lead to different 
selection orders that result in different schedules. 

We use the level of each node to determine its priority [17]. The level of a node is 
defined by the length of the longest path from the node to a terminal (or exit) node. 
The length of a path in the task graph is measured by the summation of all node weights 
and edge weights along the path. The node weight is the predicted execution time of 
the task, and edge weight is the predicted intertask communication time. Some of the 
previous works do not consider the edge weight when calculating the level of a node. For a 
node weight, we use the execution time of the task (node) on a predefined base-processor 
within the site. The weight of an edge between task i and task j is measured by divid- 
ing the data size to be sent from task i to task j, D(i,j), to a base communication-link 
bandwidth, BWf,ose. We assume that each AFG has only one root node and one exit node. 

Site Scheduler Algorithm 

In this algorithm, the next step after initializing the Task-List with level values of AFG 
nodes is to select a set of remote sites that will be part of the scheduling process and 
that may possibly be part of the execution process. If the updatcrequest flag is true, it 
indicates that one or more sites in the Sremote have high network traffic (or down). In 
this case, the remote sites are selected according to the network bandwidth between the 
remote site and the local site (shown in steps 4-8). Otherwise, the previously stored set 
is used. Then, AFG and Task-List are multicast to the involved sites for bidding, after 



which the Host.Selection-Algorithm is executed at each site (step 12). 

The Site Scheduler Algorithm receives the bidding from each site for each task in 
AFG (step 12), i.e., the best available processor, and the predicted execution time on 
the best available processor. Step 14 assigns the root task to the site that minimizes the 
predicted execution time. Step 19 calculates the earliest start time (EST) of the current 
task (task) at each site (Sj). To obtain the EST value of taski, the summation of the 
earliest finish time (EFT) and the communication cost is calculated for each immediate 
predecessor task of taski in the graph. The EFT of a task at a site is calculated by the 
summation of its EST value and the predicted execution time of the task at the current 
site (step 20). As shown in step 22, the best site of a node is the one that minimizes the 
EFT value. The best available site for the current task is determined at each iteration 
of the while-loop from step 16 to step 25. For an application flow graph AFG(v, e) with 
v nodes and e edges the while-loop takes 0(v) to compute the EST value of a node on 
a site (steps 15 and 16). We assume AFG to be a dense graph in which the number of 
edges are proportional to 0(v2). Since there are v nodes in AFG and k sites involved in 
the scheduling process, the while-loop takes 0(kv2) time; hence the time complexity of 
the site scheduler algorithm is 0(kv2), since the while-loop is the dominant part. The 
value of k will be much smaller than v; thus the worst case complexity of the algorithm 
is 0{v2). 

Site_Scheduler-Algorithm(AFG) 

Step 1 Compute the level for all nodes in AFG. 

Step 2 Initialize TaskJist according to a non-increasing order of node level. 

Step 3 Read Sremote list and the updatejrequest flag from resource performance table. 

Step 4 If updatejrequest flag is true then 

Step 5 Select k nearest neighbor sites of Siocai that maximize the network 
bandwidth and store them in a set, Sremote- 

Step 6 updatejrequest *— false. 

Step 7 Update Sremote, and updatejrequest in the resource performance table. 

Step 8 endif 

Step 9 SiteJList <— Siocai (J Sremote 

Step 10 For each site Sj € SiteJist do 
Step 11 Send AFG and TaskJist for bidding. 
Step 12 {Pred.Time(taski,Sj),BestJlesource(taski,Sj)} <- 

Host.Selection.Algorithm(TaskJist)     V taski 6 Task-List. 

Step 13   endfor 
Step 14   ResourceJttlocjTable(taski) <- Sm , such that: 

Pred-Time(taski,Sm) *- mm{Pred-Time(taski,Si)}, V$ 6 SiteJList. 

Step 15    Remove taski from the TaskJjist. 

Step 16   while TaskJjist is not empty do 

Step 17 taski <— the first task in TaskJjist. 
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Step 18 For each site, Sj, in the Site-List do 

Step 19 EST{tasku Sj) «- max {EFT(taskk,Sm)+(LT(Sm,Sj)+Btffs,ffgi))} 
V taskk € Predecessor(taski), such that: 

5m <— Resource-AllocSrdble(taskk). 

Step 20 EFT(taski, Sj) <- EST(taski, Sj) + PredJ?ime(taski,Sj). 

Step 21 endfor 

Step 22 Select Best-Site,   such that: 

EFT(taski, Best-Site) <- min{EFT(taski,Sj)}, VS,- e SiteXist. 

Step 23 Resource-Alloc3'able(taski) <— BestJiesource(taski, Best-Site) 

Step 24 Remove iasfcj from the Task-List. 

Step 25 end while 

Step 26 Multicast the Resource-Alloc-Table to the relevant sites. 

Host Selection Algorithm 

The Host Selection Algorithm determines the task assignments of AFG tasks on the avail- 
able processors within each site. The calculation of the EST is similar to the previous 
algorithm. In this algorithm, base communication-link bandwidth, BWbaSe, is considered 
for all connections within a site (step 4). Additionally, the latency within a site is negligi- 
ble if it is compared with the latency between the different sites. The communication cost 
between a task and its immediate predecessor is zero if they are scheduled to the same 
processor. The core of the Host Selection Algorithm is the performance prediction phase. 
The execution time prediction of a task on a a given resource is based on the current load 
of the processor, load of the test processor at the time of trial run, measured execution 
time for the trial run, and computing weights (step 5). 

The measured execution time and the load value for the trial runs are retrieved from 
the task-performance table, as explained in the Site Repository section of this paper. 
Weight(Pj) is the computing weight [19, 20] of processor Pj with respect to the base- 
processor at the site. To calculate the weight of each processor, trial runs of a set of task 
implementations are executed on each processor. The ratio of average execution time of 
the trial runs on a processor Pj to the average execution time on the base-processor gives 
the computing power weight of P*. In step 6, the EFT value is the summation of the EST 
and the predicted execution time. For each task, the processor that minimizes the EFT 
value is selected as the best resource in this site. An iteration of the while loop takes 
0(pv) times, where v is the number of nodes in AFG and p is the number of processor in 
the Processor-List. Thus the time complexity of the Site Scheduler Algorithm is 0(pu2). 

Host-Selection-Algorithm(Task_List) 

Step 1 while Task-List is not empty do 

Step 2 taski <— the first task in Task-List. 

Step 3 For each available processor, Pj, in the Processor-List do 

Step 4 EST(tasku Pj) <- max {E FT (taskk,Pm)+CommjCost{taskk, taski)} 
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V taskk € Predecessor(taski) such that: 
Pm *- BestJtesource(taskk) and 

C     D(fc,t)       pip. 
Comm-Costitask^askt^^BW^    ^.^ 

Step 5 Pred.Time{taski,Pj) «-  M!ltffi5i) x 

Step 6 EFT(taskh Pj) «- EST(taskit Pj) + Pred.Time(taski, Pj) 

Step 7 endfor 

Step 8 Best-Resource{taski) <- Pfe,   such that: 

EFT(taski, Pk) <- min{EFT(taski, Pj)},   VPj e Processor.List. 

Step 9      endwhile 
Step 10    Return Pred-Time(taskit BestJlesource) and Best.Resource(taski) to 5JOCOJ 

for each task. 

3.3    VDCE Runtime System 

The VDCE Runtime System sets up the execution environment for a given application 
and manages the execution to meet the hardware/software requirements of the applica- 
tion. The VDCE Runtime System separates control and data functions by allocating them 
to the Control Virtual Machine (CVM) and Data Virtual Machine (DVM), respectively. 
CVM measures the loads on the resources (hosts and networks) periodically and monitors 
the resources for possible failures. CVM daemons control the execution of the application 
tasks on the assigned resources based on the performance and quality of service require- 
ments. Application visualization (real-time or post-mortem) services are provided by 
CVM. DVM provides an execution environment for a given VDCE application by binding 
tasks so that they can interact and communicate efficiently. DVM supports socket-based 
point-to-point connections for inter-task communications. 

Control Virtual Machine (CVM) 

The functionality of CVM is provided by the following four processes: Site.CVM, Lo- 
caLCVM, Monitor, and Cluster Manager (see Figure 5). Each VDCE machine runs a 
LocaLCVM process and a Monitor daemon. Additionally, one of the machines within 
each cluster executes the Cluster Manager process. Each site (domain) has a Site.CVM 
process located at the VDCE Server machine. The main functions of the stated CVM 
processes are given below: 

• Retrieving Resource Performance Parameters. VDCE resources are periodically 
monitored to collect up-to-date values of processor and network parameters that 
were given in the Site Repository subsection of this paper. The Monitor daemon 
of each machine periodically measures the up-to-date parameters every 30 seconds 
and updates its fields at the Cluster leader machine shown in Figure 5. The Cluster 
Manager daemon gathers the parameters of machines within the cluster in a table 
and periodically forwards the table to the Site_CVM every 60 seconds. In the future 
implementation the Cluster Manager will be modified to send only the workloads 
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of the resources that have changed considerably from the previous measurement. 
The workload of a resource is significantly changed if the up-to-date measurement 
is higher or lower than the summation of the previous measurement and the width 
of the confidence interval [22]. 

Updating the Site Repository. The Site.CVM periodically updates the resource- 
performance table at the site repository with the parameters that are collected from 
Cluster Managers. The execution time and load measurement of benchmarking runs 
of tasks are stored at the task-performance table. 

Monitoring the VDCE Resources. When a Monitor daemon of a processor stores its 
parameters, it reads the random number that was generated by the Cluster Man- 
ager and updates its alive_check field with this value. Every 60 seconds the Cluster 
Manager compares its alive_check field with each cluster machine's alive-check field. 
The machines with a different value are marked as down; others are marked alive. 
After the comparison, the Cluster Manager assigns a new random number for its 
alive.check field. The monitor information is forwarded to the Site.CVM with the 
resource parameters to be stored at the site repository. The machines that are 
marked as down at the resource-performance table are not selected by the Applica- 
tion Scheduler. 

Sending the Related Portion of the Resource Allocation Table. After the resource 
allocation table is generated by the Application Scheduler, the Site_CVM multicasts 
it to the Cluster Managers that will be involved in the execution. If a machine in 
a cluster is assigned for a task execution, the Cluster Manager sends an execution 
request message and related parts of the resource allocation table to the LocaLCVM 
of the machine. 

Inter-site Coordination. As explained in Section 3.2, the Application Scheduler at 
the local site selects a subset of remote sites and multicasts the application flow 
graph to these sites. The remote sites run the Host Selection Algorithm locally and 
transfer the mapping decisions to the sender site. The inter-site coordination and 
message transfer are handled by Site.CVMs. 

Initialize the Application Execution Environment. After the LocaLCVM receives an 
execution request message from the Cluster Manager, it activates the DVM. The 
DVMs on the assigned machines set up the application execution environment by 
starting the task executions and creating point-to-point communication channels for 
inter-task data transfer. Figure 6 shows the part of the execution environment of the 
Linear Equation Solver application discussed in Section 3.1. Machine 1 will execute 
the LU.Decomposition task, which is followed by the execution of Matrix-Inversion 
tasks on Machine 2 and Machine 3. When all the required acknowledgments are 
received, an execution startup signal is sent to start the application execution. 

Managing the application execution. The LocaLCVM monitors the application ex- 
ecution on the assigned machines and maintains the performance, fault tolerance, 
and QoS requirements of the application tasks. If the current load on any of these 
machines is more than a predefined threshold value, the LocaLCVM terminates 
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VDCE SERVER MACHINE 
(SYRACUSE UNIVERSITY DOMAIN) 

VOCE SERVER MACHINE 
(ROME LABORATORY DOMAIN) 

1. Retrieving the R«sourca Performance Parameters 
2. Updating the Site Repository 
3. Monitoring the VDCE Resources 
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Figure 5: Interactions Among the Control Virtual Machine Components 
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Figure 6: Setting Up the Application Execution Environment 

the task execution on the machine and sends a task rescheduling request to the 
Site.CVM through the Cluster Manager. 

Data Virtual Machine (DVM) 

DVM is a socket-based, point-to-point communication system for inter-task communica- 
tions. Therefore, any machine that supports socket programming can be part of VDCE. 
As shown in Figure 6, the DVM activates the communication proxy and sends the resource 
allocation information, including the socket number, IP address for target machine, etc., 
that will be used for the communication channel setup. After the setup is completed 
successfully, the communication proxy sends an acknowledgment to the LocaLCVM. The 
execution startup signal is sent to start the task executions. 

On the other hand, for a thread-based programming environment, the Data Manager 
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consists of three threads that are initiated by the communication proxy: send thread, 
receive thread, and compute thread. After the communication channel is established, the 
send and receive threads are activated for data transfer and the compute thread performs 
the task execution. The control transfer between the LocaLCVM and the DVM (or any 
other control transfer on the same machine) are based on an inter-process communica- 
tion mechanism (i.e., pipes or shared-memory paradigm). The data transfer among the 
communication proxies (or between send and receive threads for multithreaded systems) 
uses a socket-based, message-passing mechanism. 

Since user tasks can be programmed in various message-passing tools, the VDCE 
Runtime System supports multiple message-passing libraries such as P4, PVM, MPI, NCS. 
Additionally, the VDCE Runtime System provides data conversions that might be needed 
when an application execution environment includes heterogeneous machines. The VDCE 
Runtime System provides several user-requested services such as I/O service, console 
service, and visualization service. A user can request these services while developing 
his/her application with the Application Editor. I/O Service provides either file I/O or 
URL I/O for the inputs of the application tasks. The user can suspend and restart the 
application execution with the console service. The VDCE visualization service provides 
both real-time and post-mortem visualizations. There are three types of visualizations 
provided in VDCE: 

• Application Performance Visualization: The execution time of tasks in an applica- 
tion is visualized. 

• Workload Visualization: Up-to-date workload information on VDCE resources is 
visualized. 

• Comparative Visualization: VDCE makes it possible for an end user to experiment 
and evaluate his/her application for different combinations of hardware and software 
medium by providing the comparative performance visualization. 

4    VDCE Testbed: Experimental Results and Discussion 

The current VDCE prototype consists of two sites, one at Syracuse University and the 
other at Rome Laboratory, that are connected by the NYNET ATM Wide Area Network, 
as shown in Figure 7. Each site or domain has a VDCE server, a Site Repository and 
several computing clusters. At the Syracuse University site there are three computing 
clusters: HPDC, CAT, and TOP. The HPDC cluster consists of several ATM switches 
and ATM concentrators that connect high-performance workstations and PCs at a rate 
of 155 and 25 Mbps, respectively (URL:http//www.atm.syr.edu). The TOP and CAT 
clusters have SUN SPARCs, SUN IPXs and IBM RS6000s that are connected to the ATM 
cluster through the Ethernet. The Rome Lab site consists of three clusters that include 
SUN, Digital, and HP workstations. 

In this section we discuss and evaluate the performance of the current VDCE proto- 
type in implementing two important tasks: 1) The use of VDCE as an evaluation tool 
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Figure 7: The configuration of the VDCE Testbed 

for the parallel implementations of the VDCE library tasks using different numbers of 
workstations, and different networks to connect them (e.g, ATM or Ethernet); and 2) 
The use of VDCE as a problem-solving environment for large-scale VDCE applications. 

4.1    Experiment 1: Using VDCE as a Parallel Evaluation Tool 

In this experiment we used the matrix multiplication (MULT) task as a running exam- 
ple to show the use of the VDCE for experimentation and to evaluate the performance 
of different configurations when the number of computers, network types, and problem 
sizes are changed. We compared the time and effort required to perform such tasks with 
and without using the VDCE. We benchmarked the sequential and parallel algorithms 
of Matrix multiplication(MULT) based on various machine and network configurations 
and problem sizes. The parallel implementation of MULT (A x B = C) task is based on 
the host-node programming model. The master process distributes the rows of matrix A 
evenly among the processes (where each process runs on one workstation) while all the 
slave processes receive the entire B matrix. Each slave process computes its part of result 
matrix C and sends it back to the host process. 

The VDCE provides a web-based, user-friendly interface that allows a novice pro- 
grammer to experiment with and evaluate different parallel configurations of each VDCE 
task in minutes. We argue that performing similar evaluation tasks is almost impossible 
for novice programmers and requires hours and even days to be performed by an expert 
programmer using parallel processing and message passing and visualization tools. With 
VDCE, once a task library is registered to the VDCE site repository, any VDCE user can 
use that task or any existing VDCE task by just clicking on the task name in the Appli- 
cation Editor. Once the task is selected, the user can click on one button to determine 
the problem size, the number of computers to be involved in the computation, and the 
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network to be used to connect them. Selecting the VDCE task and specifying how it will 
be implemented can be done in a few minutes. Once that is done, the task configuration 
can be run and its execution time visualized immediately without any effort other than 
clicking on the execute and visualize buttons. 

Figure 8 shows the execution times of the VDCE-based, matrix multiplication algo- 
rithm for 512 x 512 and 1024 x 1024. The result for p4-based implementation of the same 
multiplication algorithm is given in Figure 9. The experiments were done for one, two 
and four Sun SPARCs that are connected by an IP/ATM network. We also evaluated 
the performance of MULT task on a heterogeneous cluster of four SUN SPARCs and four 
IBM RS6000 workstations. The objective of such an evaluation is to provide users with 
a better understanding of the performance of parallel processing algorithms when there 
is a change in problem size, number of nodes, or network type. As an example, for the 
p4-based, matrix multiplication algorithm, we can determine from Figure 9 that eight 
nodes provide the best performance among the test cases. 

problem size = 512x512,1024x1024 (ATM) 

t 2 4 
Number of Machines 

Figure 8: Execution Time of Matrix Multiplication Task Using VDCE 

Table 2 compares the times required to develop, compile, execute, and visualize a 
Matrix Multiplication task using p4 and VDCE for a 1024 x 1024 problem size with four 
nodes. In the design and implementation phase, it takes around 862 minutes for a par- 
allel programming expert to develop a p4-based multiplication program from scratch if 
we assume that programming speed is two minutes per line. If the programmer has no 
experience with p4, he/she will spend more time to learn about it and to develop an 
application. For VDCE, even if the user does not have any knowledge about parallel 
programming, but wants to run the application in parallel, the only thing he/she needs 
to do is to choose the parallel option in the application design window of the Application 
Editor. Additionally, he/she can easily define the I/O for a task using the Application 
Editor. The total time for developing a VDCE MULT application is 2.10 minutes. 
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Figure 9: Execution Time of Matrix Multiplication Task Using p4 

Table 2 
The performance comparison of matrix multiplication task for each software phase 

Phase p4 

Design and development 

Compilation 
Runtime setup 
Task execution 
Visualization and evaluation       1890sec. 

862 min. 
(431 lines) 
7.01 sec. 
0.980 sec. 
0.194 sec. 

VDCE 

2.10 min. 

0 sec. 
0.015 sec. 
0.136 sec. 
0.095 sec. 
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There is no compilation time in VDCE after the VDCE MULT application is designed. 
The location of the executable for MULT task on the selected resource is provided in the 
resource allocation information, which is retrieved from the task constraints table. The 
executable is then linked to the I/O module. In the p4 version the MULT program takes 
7.01 seconds for compilation. The runtime setup time in VDCE is for the CVM to transfer 
the activation and resource allocation information to DVM and to wait for the acknowl- 
edgment, which takes 15 milliseconds for the MULT task on the selected resource. For 
a p4 application, the user creates a configuration file, i.e., procgroup file, and manually 
links it to the p4 application which takes 980 milliseconds. VDCE runs the application 
automatically with the "Execute Application" button and generates the results in the 
selected output file. The execution time of MULT task is 136 milliseconds when it is 
executed on four nodes over the ATM. The execution time is 194 milliseconds using a p4 
program with the same configuration. 

VDCE provides dynamic and post-mortem visualization of the application. A VDCE 
user monitors the load of all machines dynamically in the domain and he/she can consider 
the load information to select an appropriate machine and/or a cluster. In addition, the 
execution time of each module within an application is visualized in VDCE. It takes 
95 milliseconds to invoke the VDCE visualization window for the MULT task. If a p4 
user wants to visualize the execution time to compare its performance with others, it is 
necessary to use another graphic tool. The visualization and evaluation time depends on 
which tool is used; as an example, "gnuplot" takes 1890 seconds. 

4.2 Experiment 2: Using VDCE as a Problem Solving Environment 

In this experiment we demonstrated how the VDCE can enable a novice programmer to 
develop large-scale parallel and distributed applications running on geographically dis- 
tributed heterogeneous resources. Implementing such applications is currently a challeng- 
ing programming problem and time consuming for experts on parallel and distributed 
programming tools. A distributed application can be viewed as an Application Flow 
Graph (AFG), where its nodes denote computational tasks and its links denote the com- 
munications and synchronization between these nodes. Without an application develop- 
ment tool, a developer or development team must apply much effort and time to develop 
a distributed application from scratch. The VDCE provides a web-based interface to 
enable users to develop, configure, execute, and visualize such a distributed application 
in a few minutes. However, to perform the same tasks in a non-VDCE case, the user 
or team developers need to develop techniques to interact and communicate the modules 
running on different computers, and they need to develop or integrate techniques to run 
and manage the execution of the distributed application, as well as collect and visualize 
the required performance results. 

To solve these difficulties, VDCE provides an integrated problem solving environ- 
ment to enable novice users to develop large-scale, complex, distributed applications us- 
ing VDCE tasks. The Linear Equation Solver (LES) application has been selected as a 
running example. Figure 4 shows the AFG of Linear Equation Solver, which consists of 
an LU Decomposition (LU) task, two Matrix Inversion (INV) tasks and Matrix Multi- 
plication (MULT) tasks. The problem size for this experiment is 1024 x 1024 using four 
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Table 3 1 
Performance comparison of linear equation solver application for each software phase 

p4     ~ VDCE 

Phase LU INV MULT       LU INV MULT 

Design and development 838 min. 1314 min. 862 min.     2.10 min.  1.57 min. 2.30 min. 
(419 lines) (657 lines) (431 lines) 

Compilation 6.45 sec. 8.10 sec. 7.01 sec.     0 sec.        0 sec.        0 sec. 
Runtime setup 1.200 sec. 1.580 sec. 0.980 sec. 0.043 sec 
Task execution 0.386 sec. 0.556 sec. 0.194 sec.   0.801 sec. 1.360 sec. 0.140 sec 

Application execution 1-691 sec. 1-451 sec. 
Application visualization 3200 sec.  0.140 sec.  

nodes, which are SUN SPARCs and IBM RS6000 machines that are connected by an 

ATM network. 

Table 3 compares the timing of several software phases for a Linear Equation Solver 
application using p4 and VDCE. When a user has enough knowledge about parallel pro- 
gramming and the p4, he/she will spend 838 minutes for an LU task, 1314 minutes for 
an INV task, and 862 minutes for MULT task. The total time to develop the application 
for a non-VDCE version is approximately 3014 minutes, (i.e., around 50 hours). Using 
VDCE, a novice user spends around six minutes to develop such an application. There is 
no compile time for VDCE, but a p4 application needs 21 seconds for compilation. The 
VDCE setup time for a Linear Equation Solver application is 43 milliseconds. The p4 
user should create all procgroup files and launch them in order, which takes around eight 

seconds. 

Since the VDCE is based on the data flow model and executes tasks automatically, 
there may be overlap among task executions that causes the total execution time of the 
VDCE application, including the setup time, to be less than the summation of all individ- 
ual task execution times. In our experiment with the Linear Equation Solver application, 
the total execution time of p4 parallel execution using four nodes is 1691 milliseconds. 
A VDCE-based execution with the same configuration takes 1451 milliseconds, which 

outperforms the p4 by 16%. 

5    ADAPTIVE DISTRIBUTED VIRTUAL COMPUTING ENVIRONEMNT 
(ADViCE) 

5.1    Introduction 

With the proliferation of wireless networks, metacomputing services can be extended to 
include mobile users and resources. A mobile metacomputing environment allows users 

xThe last two rows of the table are for the total time of the application. 
2It is the total setup time for a VDCE-based linear equation solver application. 
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not only access to information servers from mobile computers, but also enables them to 
develop, run, and visualize large scale parallel and distributed applications running on 
heterogeneous computers that are connected by wired and wireless networks. 

The main goal of the ADViCE project is to extend the current VDCE to support 
mobile users and resources. ADViCE provides a parallel and distributed programming 
environment; it provides an efficient web-based user interface that allows users to develop, 
run and visualize parallel/distributed applications running on heterogeneous computing 
resources connected by wired and wireless networks. Consequently, the fact that some of 
the resources are mobile such as users, computers, storage devices and networks become 
transparent to the users and the application developers. 

5.2 Related Work 

In this section we provide a brief overview of the issues related to parallel and distributed 
programming environments and mobile computing. 

5.3 Parallel and Distributed Software Development Issues 

The software development process of parallel and distributed applications can broadly be 
described in terms of three phases: a) Application design and specification, b) Application 
scheduling and resource configuration, and c) Application execution and runtime. 

• Application Design and Specification: In a well-integrated execution envi- 
ronment it is important to provide: a) an easy-to-use interactive user-interface to 
design and specify parallel distributed applications and, b) well-developed graphical 
utilities for the visualization of results and program behavior. Generally, writing 
parallel and distributed programs overwhelms users due to the difficulty of explic- 
itly expressing communication and synchronization among the computations [7]. 
A graph-based programming environment, in which a program is defined as a di- 
rected graph where nodes denote computations and links denote communication and 
synchronization between nodes, may be used to decrease the work of programmers. 
Currently, there are a few visual parallel programming languages and environments, 
such as Computationally Oriented Display Environment (Code) [11], Heterogeneous 
Network Computing Environment (HeNCE) [12], and Zoom [13]. To develop a Code 
or HeNCE application, a programmer first expresses the sequential computations in 
a standard language and then specifies how they are to be composed into a parallel 
program. Zoom is a hierarchical abstraction for describing heterogeneous appli- 
cations. Zoom representation of an application can be translated into a HeNCE 
program for execution [12]. Currently, there is an increased interest in developing 
web-based application development tools and environments because of the explosive 
use of internet applications [29]. 
ADViCE graphical user interface is web-based GUI and has been developed using 
JAVA programming language and JAVA servers. 

• Application Scheduling and Resource Configuration After the is specified 
and developed, the application tasks need to be assigned to the available computing 
and storage resources. In the literature, although the task scheduling (or resource 
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allocation) problem has been investigated extensively, most of the algorithms and 
systems are valid only for specific architectures and/or certain class of applications. 
One interesting general scheduling framework is the APPLeS [14]. The APPLeS 
proposes application-level scheduling in which all system aspects are evaluated with 
respect to application performance. APPLeS develops a customized schedule for 
each application by including user-specific, application-specific, system-specific, and 
dynamic information in its scheduling decision. There are resource management 
systems to provide load sharing and resource allocation such as the Condor project 
that has been developed at the University of Wisconsin [31]. Condor is a distributed 
batch system for sharing the workload of compute-intensive jobs in a pool of UNIX 
workstations connected by a network. In ADViCE, we follow similar approach to 
APPLeS, where for each parallel and distributed application, the system generates 
at runtime an adaptive schedule that can optimize the requirements of an application 
such as performance, fault-tolerance, or security. 

• Application Execution and Runtime: The application execution and runtime 
phase executes the developed and configured application. This stage integrates the 
assigned resources that have been assigned to run the application tasks. The soft- 
ware tools used for the execution of the application can be either based on message- 
passing tools such as PVM [23], P4 [25], MPI [24], and NCS [26] or based on 
distributed shared memory (DSM) [3, 4, 5, 6]. In addition, there are a few projects 
targeted toward providing a metacomputing environment on diverse resources. The 
earliest metacomputer, the NCSA Metacomputer [27], was an integration of several 
MPPs, mass storage units, visualization and I/O devices. Globus [21], Legion [28], 
and VDCE [8, 10] targeted toward the development of metacomputing environ- 
ments. Additionally, there are several web-based metacomputing projects [29], that 
either use the JAVA programming language as the main computation language or 
provide a coordination medium based on WWW technologies or the JAVA language. 
There may be some drawbacks to these methods. First, they may not support the 
programs written in other languages such as C and Fortran. Second, they may sup- 
port communication only between a server and a client, which restricts the execution 
of the candidate applications. The ADViCE runtime system is based on message 
passing tools and is implemented using P4 and NCS. We also using JAVA and web- 
servers to perform all the control, management and visualization functions, while 
we use C, C++, Fortran, and any other language to program the application tasks. 
In other words, our approach is open and can support any language to implement 
the application tasks. 

5.4    Mobile Computing Issues 

Mobile computing is increasingly becoming an important programming environment and 
there has been very little research to address the programming issues in such an envi- 
ronment and how to integrate it into the current parallel distributed programming envi- 
ronments with stationary resources. The main characteristics and constrains of mobile 
computing are [1, 2]: 1) The use of wireless networks make mobile resources resource- 
poor relative to stationary resources and the communication performance and reliability 
varies widely, 2) Mobile resources complicates the issues related to resource locations and 
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portability, and 3) Mobile resources rely on a finite energy resource. The main limita- 
tions of developing mobile parallel and distributed programming environments include 
the following: 

• The use of wireless networks implies that applications will experience low trans- 
fer rate and unreliable communication links. We expect this limitation to ease in 
the future as the use of wireless technology expand and more progress is made in 
increasing the transfer rate over wireless networks. 

• The current techniques to support dynamic task migrations and adaptive resource 
configurations are rigid and can not run efficiently when the computing and storage 
resources are fixed and/or mobile. For example, it is possible that some of the tasks 
associated with a parallel and distributed application could be running on several 
high performance computers that are connected by a fiber-optic high speed network 
while other tasks are running on computers that are connected by a low speed, 
unreliable wireless network. The performance of this application will drastically 
affected by the performance of the communication services offered by the wireless 
network. 

The main goal of the ADViCE prototype is to integrate stationary parallel and dis- 
tributed computing environment with mobile computing. We developed an efficient ap- 
proach to support adaptive programming and services for both mobile and stationary 
resources. In general, there are two extremes for supporting adaptation [1]: 1) Make 
the adaptation is entirely the responsibility of individual applications, and 2) Make the 
adaptation is completely transparent to the application and thus must be supported by 
the system. The first approach avoids the need for system support, but it lacks the ability 
to resolve incompatible resource demands of different applications and to enforce limits 
on resource usage. The second approach since it can support adaptivity to existing appli- 
cations so they can run on mobile resources without any modifications. The adaptivity 
approach supported in ADViCE is a combination of these two schemes. The user can 
specify during the application development the application adaptivity requirements. The 
ADViCE runtime system is responsible for maintaining the adaptivity requirements of 
the application during its execution. 

5.5    Overview of ADViCE Architecture 

The ADViCE can be viewed as a collection of geographically dispersed computational 
sites or domains, each of which has its own set of ADViCE servers as shown in Figure 10. 
In any ADViCE, the users, fixed or mobile, access the ADViCE servers (Visualization and 
Editing Server (VES) and Control and Management Server (CMS)) to develop parallel 
and distributed applications that can run on fixed or mobile computing resources (see 
Figure 10). In ADViCE, the users are provided with a seamless parallel and distributed 
computing environment that provides all the software tools to develop, schedule, run 
and visualize large scale parallel and distributed applications. In other words, ADViCE 
supports the following types of transparency: 

• Access Transparency: The users can login and access all the ADViCE resources 
(mobile and/or fixed) regardless of their locations. 
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• Mobile Transparency: ADVICE supports in a transparent manner mobile and fixed 

users and resources. 

. Configuration Transparency: The resources allocated to run a parallel and dis- 
tributed application can be dynamically changed in a transparent manner; that is 
the applications or users do not need to make any adjustment to reflect the changes 

in the resources allocated to them. 

• Fault-Tolerance Transparency: The execution of a parallel and distributed appli- 
cation can tolerate failures in the resources allocated to run that application. The 
number of faults that can be tolerated depends on the redundancy level used to run 

the application. 

• Performance Transparency: The resources allocated to run a given parallel and 
distributed application might change dynamically and in a transparent manner to 
improve the application performance. 

Figure 10: Adaptive Changes in the ADViCE environment. 

Due to some changes in the network traffic or failures, it might be necessary to move 
the execution environment of one application from one ADViCE domain to another as 
shown in Figure 1. During the switching from one ADViCE environment to another, 
one or more ADViCE servers as well as the resources allocated to run a given ADViCE 
application might be switched. In Figure 1, when the application execution environment 
is switched from ADViCEl to ADV1CE2, the VES is changed while the CMS is kept the 

same in both environments. .,,..,. 
Our approach to implement the ADViCE architecture is based on identifying a set 

of servers that are essential to provide the required tools for any parallel and distributed 
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programming environment. The current prototype is built using two web-based servers as 
shown in Figure 2: Visualization and Editing Server (VES) and Control and Management 
Server (CMS). The ADViCE architecture can be generalized to more than two servers. 
However, in our implementation, we used only two servers to simplify the implementation 
of the required ADViCE services. The VES provides all the editing and visualization ser- 
vices essential for the application development, while the CMS provides all the services 
required to schedule, control and manage the execution of the application so it can dy- 
namically adapt its execution environment to maintain its quality of service requirements. 
In what follow, we briefly describe the basic services offered by the ADViCE servers. 
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Figure 11: The Main Components of the ADViCE Architecture. 

5.5.1    Visualization and Editing Server (VES) 

This server provides two main application development services:   Application Editing 
Service (AES) and Application Visualization Service (AVS). 

description Application Editing Service (AES) 

The AES is a web-based graphical user interface for developing parallel and 
distributed applications. The AES provides users with commands to develop 
and run a new or an existing parallel and distributed application. The main 
functions offered by the AES are connection establishment and application 
editor. 

• Connection Establishment: Before the end-user connects to the ap- 
propriate VES, a default server is initially used to fulfill the logical- 
physical mapping. The default VES will determine the appropriate VES 
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server based on user's location and current system performance parame- 
ters. Once the appropriate VES is identified, then the authorization and 
authentication procedures are invoked by the selected VES server before 
the user is allowed to use the ADViCE services. After the user passes 
successfully all the security procedures, the AES invokes the Application 
Editor window to support the user with the tools required to develop 
parallel and distributed applications. 

Application Editor: The application editor provides menu-driven task 
libraries that are grouped in terms of their functionality, such as matrix 
algebra library, command and control task library, etc. A selected task 
is represented as a clickable and draggable graphical icon in the active 
editor area. Using the application editor, the user can develop an Ap- 
plication Flow Graph (AFG) which is a directed graph where the nodes 
denote library tasks and links denote the communication/synchronization 
between the nodes. The application editor provides also users with the 
capability to specify task configuration; that is whether to run each task 
in sequential or in parallel, and if in parallel how many nodes to execute 
that task (see Figure 12). 
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Figure 12: An Application Flow Graph Example. 

description Application Visualization Service (AVS) 

This service enables the user to visualize the application execution time and 
system runtime parameters. For example, Figure 13 shows the execution time 
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for each task in the application shown in Figure 12. In addition, the AVS 
shows the total execution time of the application and the setup time of the 
application execution environment. 
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Figure 13: The Performance of each Application Task. 

5.5.2    Control and Management Server (CMS) 

The main services of the CMS include Application Resource Service (ARS), Application 
Management Service (AMS), Application Control Service (ACS), and Application Data 
Service (ADS). In addition, the CMS maintains two databases (see Figure 2): one to store 
the configuration and status information about the resources available in an ADViCE do- 
main (a domain is a distributed computing environment controlled by one organization 
or an administration), and one database to store the task performance information (e.g. 
execution times of each ADViCE library task on different computing platforms). The task 
performance database is used to estimate the task execution time on different computing 
platforms and is used by the ARS to optimize the allocation of resources to application 
tasks. 

description Application Resource Service (ARS) 

The main functions of the ARS is to interpret the application flow graph gen- 
erated by the AES and then allocates resources to the application tasks to 
optimize certain criterion such as performance, fault-tolerance, or any other 
requirements specified by the user. The main functions of the ARS include 
Performance-based Scheduling, Security-based Scheduling, and Fault Tolerance- 
based Scheduling. The performance-based scheduling determines the mapping 
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of tasks to resources that will maximize the application performance, while 
the security-based scheduling allocates to the application tasks only the re- 
sources that meet that application security requirements. Similarly, the fault 
tolerance based scheduling allocates redundant resources to run each applica- 
tion task such that the application execution can tolerate certain number of 
failures in the resources allocated to execute the application. In addition, the 
ARS provides application rescheduling capability in order to reallocate some 
of the application tasks whose executions have been interrupted due to some 
changes in network and system resources; these changes could be triggered be- 
cause of the mobility of resources or software/hardware failures in the ADViCE 

resources. 
description Application Management Service(AMS) The AMS utilizes 
standard management functions to control and manage the execution of par- 
allel and distributed applications. The AMS provides ARS with management 
information about ADViCE resources to optimize the allocation of application 
tasks to the currently available ADViCE resources. The AMS also provides 
a well defined interface that enables other software modules (e.g. ARS, ACS, 
ADS) to access any management information required to achieve real-time 
adaptive services. 

description Application Control Service (ACS) 

The ACS provides applications with the required services to setup, run, con- 
trol and manage their execution within the ADViCE. The main ACS functions 
include setting up the application execution environment, monitoring the ap- 
plication execution, and collecting the task performance information required 
for the visualization of the application execution. In setting up the application 
execution environment, the ACS launches a proxy process (we refer to as the 
local-ACS) at each machine selected for the application execution according 
to the Allocation Channel Table (ACT) generated by the ARS. This involves 
setting up socket connections between the CMS and the client machines. The 
local-ACS periodically updates the task performance database and notifies the 
CMS of any runtime errors. 

description Application Data Service (ADS) 

The ADS provides services to establish high speed communication data paths 
between the application tasks. In addition, ADS supports limited task manage- 
ment functions such as data conversion, task migration, handling user request 
exception, and periodically monitoring the task performance. 

5.6   ADViCE Adaptation Approach 

One important goal of the ADViCE is to deliver an adaptive parallel and distributed com- 
puting environment that can automatically modify its configuration based on the changes 
in the environment. These changes could be due to failures in hardware, software failure, 
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mobility of resources, or bursty network traffic. The ADViCE adaptation approach fol- 
lows three important phases or steps: 1) Change Detection, 2) Analysis and Verification, 
and 3) Adaptation Plan. This approach is similar to the adaptation approach proposed 
to achieve fault tolerance distributed computing [32]. For each ADViCE service (AES, 
AVS, ARS, ACS, ADS), we develop the appropriate algorithms to detect the changes in 
the service once it occurs, to analyze and verify the detected changes in the service, and 
finally carry out the steps defined in the adaptation plan associated with that service. 
Figures 14, 15, 16, and 17 show the ADViCE Adaptation Algorithm and procedures. 

The Application Execution Environment (AE(Appi)) denotes all the resources allo- 
cated to run application Appi. While the application is running (Step 1 in the ADViCE 
Adaptation Algorithm of Figure 14), the ACS monitors all the ADViCE services (Steps 2 
through 26 in the ADViCE Adaptation Algorithm of Figure 14) associated with that ap- 
plication to detect any possible changes or deterioration in the application performance. 
Once any change is detected, the change detection procedure associated with the service 
that has experienced the changes is invoked (Steps 4, 10, 16, and 22 in the ADViCE 
Adaptation Algorithm of Figure 14). For example, assume during the application devel- 
opment, the mobile user has experienced an excessive delay because the AES service is 
running on a VES server that is outside the current location of the mobile user. This 
is detected when the AES monitoring routine discovers that the communication delay to 
the VES server is larger than the acceptable Dmax (Step 1 in Change_Detection_AES of 
Figure 15). Once that delay is detected, the Verification and Analysis procedure for that 
service is invoked (Step 6 in the ADViCE Adaptation Algorithm of Figure 14). In a 
similar manner, we device detection algorithms for each service offered by the ADViCE 
servers (VES and CMS) as shown in Figure 16. 

The Verification and Analysis procedures shown in Figure 16 involves analyzing the 
current state of the system resources by using the AMS services to validate and identify 
accurately the event(s) that contributed to the changes if they were proven to be true 
and not false or transient. For example, if the change detection procedure of the ADS 
has determined the EventType to be "link failure" (Step 4 in Change_Detection_ADS 
of Figure 15). This event could be caused by the machine being down or task failure 
(Step 11 through 18 in Verification_A.nalysis_A.DS of Figure 16). The verification and 
analysis could be simply reading the OperStatus in the interface MIB associated with 
each communication link used for the inter-task communications. If the status of is found 
to be caused by machine failure, then the EventCause is assigned as "machine down" and 
then the Adaptation Plan associated with ADS is invoked as shown in Figure 14 (Step 
25). 

The Adaptation Plan procedures involves taking the appropriate actions to enable 
the ADViCE to adapt to the changes that have been detected and verified. The adapta- 
tion plan procedure invoke the appropriate operations associated with the adaptation of 
each service. For example, the adaptation plan for the ADS associated with "task down" 
could be to restart the application execution from the beginning (Step 17 in Adapta- 
tionJ?lan_ADS of Figure 17). 
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procedure ADViCE-Adaptation.Algorithm 
1 while ( AE{Appi) is running )  do { 
2 monitor ADViCEServices 
3 monitor AES 
4 EventType «- Change.Detection.AES() 
5 if EventType ^ Normal 
6 EventCause <- Verincation_A.nalysis_AES(.EventType, AE{Appi)) 
7 Adaptation-Plan-AES(£i;entCause, AE(Appi)) 

8 endif 
9 monitor AVS 
10 EventType «- Change.Detection_AVS() 
11 if EventType ^ Normal 
12 EventCause «- Verincation-Analysis_AVS(.Ei>entrype, A£(4ppi)) 
13 Adaptation_Plan_AVS(£ueniCause, A£(Appi)) 

14 endif 
15 monitor ACS 
16 EventType «- Change.Detection_ACS() 
17 if EventType j= Normal 
18 EventCause «- Verification_A.nalysis_ACS(JSventType, AE(AppO) 
19 Adaptation.Plan_ACS(.EueniCause, AJS(Appi)) 

20 endif 
21 monitor ADS 
22 EventType <— Change-Detection_ADS() 
23 if EventType jt Normal 
24 EventCause <- Verification_A.nalysis_ADS(B«entrype, Aß(Appi)) 
25 AdaptationJPlan_A.DS(.EwntCaiise, A£(Appi)) 

26 endif 
27 } endwhile 

end   of ADViCE-Adaptation .Algorithm 

Figure 14: ADViCE Adaptation Algorithm 
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procedure Change_Detection_AES() 

1 »f tconnect{VES) > Dmax 
2 EventType = unacceptable delay to VES 
3 else if unable to locate VES 
4 EventType = VES down 
5 else if unable to locate the database server 
6 EventType = database down 

7 else 
8 EventType = Normal 
9 endif 
10 return(jBventTj/pe) 

end   of Change.Detection_AES 

procedure ChangeJDetection_ADS() 
1 if inter task communication delay > Dmax 
2 EventType = inter task communication delay 
3 else if broken pipe detected 
4 EventType = link failure 

5 else 
6 EventType = Normal 
7 endif 
8 ret\im(EventType) 

end   of Change_Detection_ADS 

Figure 15: ADViCE Change Detection Procedures 
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procedure Verification_A.nalysis_AES(ßwntType, AE(Appi)) 
1 case EventType = unacceptable delay to VES 
2 verify delay to VES 
3 if measure the delay to VES > Dmax 
4 check if the delay is caused by the location of VES 
5 EventCause = location change of VES 
6 check if the delay is caused by the location of the user 
7 EventCause = user's location change 
8 check if the delay is caused by heavy load VES 
9 EventCause = heavily loaded VES 

10 endif 
11 case EventType = VES down 
12 verify VES down by AMS MIB 
13 if true 
14 check if VES down is caused by the VES machine failure 
15 EventCause = VES machine down 
16 endif 
17 case EventType = database down 
18 verify database down by AMS MIB 
19 if true 
20 check if database down is caused by database machine down 
21 EventCause = Application Repository database machine down 
22 check if database down is caused by database server down 
23 EventCause = Application Repository database server down 

24 endif 

25       retum(EuentCause) 
end  of Verification_Analysis_A.ES 

procedure Verification_Analysis_ADS(ßiientType, AE{Appt)) 
1 case EventType = inter task communication delay 
2 verify the communication delay 
3 if measure inter task delay > Dmax 

4 check if the delay is caused by heavy network traffic 
5 EventCause = heavy traffic 
6 check if the delay is caused by heavy load 
7 EventCause = heavy CPU load 
8 endif 
9 case EventType = link failure 
10 verify link failure by AMS MIB 
11 if true 
12 check if link failure is caused by machine down 
13 EventCause = machine down 
14 check if link failure is caused by task down 
15 EventCause = task down 
16 endif 

17       return(ßuentCause) 
end  of Verification_Analysis_A.DS 

Figure 16: Verification and Analysis Procedures 
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procedure Adaptation-Plan_A.ES(JSuentCouse, AE(Appi)) 
1 case EventCause = location change of VES or 
2 EventCause = user's location change or 
2 EventCause = heavily loaded VES or 
3 EventCause = VES machine down 
4 | access the default VES 
5 | locate a new VES 
6 j transfer the information from current VES to a new VES 
7 case EventCause = Application Repository database machine down 
8 | choose alternative Application Repository database 
9 case EventCause — Application Repository database server down 
10 I start the database 

end   of Adaptation.Plan_AES 

procedure Adaptation-Plan_A.DS(iJuentCause, AE(Appi)) 
1 case EventCause = heavy traffic or 
2 EventCause = heavy load or 
3 EventCause = machine down 
4 | invoke ARS to assign a new machine 
5 | if migration required 
6 |    task migration 
7 j endif 
8 | if partial recovery is possible 
9 |     resume from the stopped task 
10 j else 
11 j     resume from the task check pointed state 
12 j endif 
13 case EventCause = task down 
14 | if partial recovery is possible 
15 |     resume from the task check pointed state 
16 j else 
17 |    start the application from the beginning 
18 endif 

end  of Adaptation_Plan_ADS 

Figure 17: Adaptation Plan Procedures 

33 



6    ADViCE Testbed: Experimental Results and Discussion 

The current ADViCE prototype consists of two sites, one at Syracuse University and the 
other at Rome Laboratory, that are connected by the OC3 ATM Wide Area Network, as 
shown in Figure 18. We are currently setting up a new site at the University of Arizona. 
Each site or domain has two ADViCE servers that manage the computing and network 
resources available in their site. At the Syracuse University site there are three computing 
clusters: HPDC, CAT, and TOP. The HPDC cluster consists of several ATM switches 
and ATM concentrators that connect high-performance workstations and PCs at a rate 
of 155 and 25 Mbps, respectively (URL:http//www.atm.syr.edu). The TOP and CAT 
clusters have SUN SPARCs, SUN IPXs and IBM RS6000s that are connected to the ATM 
cluster through an Ethernet network. The Rome Lab site consists of three clusters that 
include SUN, Digital, and HP workstations. 

HPDC Cluster 
IBM um 

SUN 

li-^jfi?Mij    SP Domain     RonWLab Domain 

•   SUN Cluster 

1 

Figure 18: The configuration of the current ADViCE Testbed. 

In this section we discuss and evaluate the performance of three important functions 
supported by the ADViCE prototype: 1) Task Performance Evaluation Tool, 2) Problem- 
Solving Environment, and 3) Adaptation Support. 

6.1    Experiment 1: Using ADViCE as a Parallel Evaluation Tool 

In this experiment we used the matrix-vector multiplication (MULT.V) task as a running 
example to evaluate the use of the ADViCE prototype as an evaluation tool to analyze the 
performance of different configurations when the number of computers, network types, 
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and problem sizes are changed. We compared the time and effort required to perform such 
tasks with and without using the ADViCE prototype. We benchmarked the sequential 
and parallel algorithms of matrix-vector multiplication(MULT_V) based on various ma- 
chine and network configurations and problem sizes. The parallel implementation of the 
MULT.V (A x B = C) task is based on the host-node programming model. The master 
process distributes the rows of matrix A evenly among the processes (where each process 
runs on one workstation) while all the slave processes receive the entire B matrix. Each 
slave process computes its part of the result matrix C and sends it back to the host process. 

The ADViCE provides a web-based, user-friendly interface that allows a novice pro- 
grammer to experiment with and evaluate different parallel configurations of each AD- 
ViCE task in a few minutes. We argue that performing similar evaluation tasks is almost 
impossible for novice programmers and requires hours and even days to be performed 
by an expert programmer in parallel processing, message passing and visualization tools. 
Using ADViCE prototype, once a task is registered in the ADViCE task library, the user 
can use that task or any other library tasks by just clicking on the task name in the 
Application Editor window. Once the task is selected, the user can specify the desirable 
configuration to run the selected task; specify the number of computers to be involved in 
the computation, and the network to be used to connect them if the task is going to run 
in parallel. Selecting the ADViCE task and specifying how it will be implemented can be 
done in a few minutes. Once that is done, the task configuration can be executed and its 
execution time can be visualized immediately without any effort other than clicking on 
the execute and visualize buttons in the Application Editor window. 

Figure 19 shows the execution times of a matrix multiplication algorithm for two 
problem sizes, 512 x 512 and 1024 x 1024. The result for a p4-based implementation of 
the same multiplication algorithm is given in Figure 20. The experiments were done for 
one, two and four Sun SPARCs that are connected by an IP/ATM network. We also 
evaluated the performance of the MULT.V task on a heterogeneous cluster of four SUN 
SPARCs and four IBM RS6000 workstations. The objective of such an evaluation is to 
provide users with a better understanding of the performance of parallel algorithms when 
there is a change in problem size, number of nodes, or network type. As an example, 
for the p4-based implementation of the matrix-vector multiplication algorithm, we can 
determine from Figure 20 that eight nodes provide the best performance among the test 
cases. 

Table 4 compares the times required to develop, compile, execute, and visualize the 
Matrix-Vector Multiplication task using p4 and the ADViCE prototype for a 1024 x 1024 
problem size with four nodes. In the design and implementation phase, it takes around 
862 minutes for a parallel programming expert to develop a p4-based multiplication pro- 
gram from scratch if we assume that programming speed is two minutes per line. If the 
programmer has no experience with p4, he/she will spend more time to learn the tool and 
then implement the parallel algorithm. For the ADViCE, even if the user does not have 
any knowledge in parallel programming, but wants to run the application in parallel, the 
only thing he/she needs to do is to choose the parallel option in the task configuration 
window of the Application Editor. The total time for developing the ADViCE MULT.V 
application is 2.10 minutes rather than 862 minutes if one needs to develop the application 
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Figure 19: The Performance of the ADViCE Implementation of the Matrix-Vector Mul- 
tiplication. 
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Figure 20: The Performance of the P4 Implementation of the Matrix-Vector Multiplica- 

tion. 
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Table 4 
The performance comparison of the matrix-vector multiplication task for each software development phase 

Phase p4 ADViCE 

Design and development      862 min.   2.10 min. 
(431 lines) 

Compilation 7.01 sec.   0 sec. 
Runtime setup 0.980 sec. 0.015 sec. 
Task execution 0.194 sec. 0.136 sec. 
Visualization and evaluationl890sec.    0.095 sec. 

from a scratch. 
The location of the executable for the MULT.V task on the selected resource is pro- 

vided in the resource allocation information, which is retrieved from the task constraints 
table. The executable is then linked to the I/O module. In the p4 version the MULT.V 
program, it takes 7.01 seconds for compilation. The runtime setup time for the ADViCE 
prototype consists of the time it takes the ACS to transfer the activation and resource 
allocation information to the ADS and the time for the acknowledgment. This setup time 
takes 0.015 seconds for the MULT.V task on the selected resource. For a p4 application, 
the user creates a configuration file, i.e., the procgroup file, and manually links it to the 
p4 application which takes 0.98 seconds. ADViCE runs the application automatically 
with the "Execute Application" button and generates the results in the selected output 
file. The execution time of the MULT.V task is 0.136 seconds when it is executed on four 
nodes over the ATM. The execution time is 0.194 seconds using a p4 program with, the 
same configuration. 

In addition, ADViCE provides dynamic and post-mortem visualization of the applica- 
tion. The user can visualize the loads of all the machines in one domain and can even focus 
on the load information for the machines selected to run a given application. Further- 
more, the execution time of each module within an application is visualized in ADViCE. 
It takes 0.095 seconds to invoke the ADViCE visualization window for the MULT.V task. 
If a p4 user wants to visualize the execution time to compare its performance with others, 
it is necessary to use another graphic tool. The visualization and evaluation time depends 
on which tool is used; as an example, "gnuplot" takes 1890 seconds. 

6.2   Experiment 2: Using ADViCE as a Problem Solving Environment 

In this experiment we demonstrate how the ADViCE can enable a novice programmer 
to develop large-scale parallel and distributed applications running on geographically 
distributed heterogeneous resources. Implementing such applications is currently a chal- 
lenging programming problem and time consuming for even experts in parallel and dis- 
tributed programming tools. A distributed application can be viewed as an Application 
Flow Graph (AFG), where its nodes denote computational tasks and its links denote 
the communications and synchronization between these nodes. Without an application 
development tool, a developer or development team must apply much effort and time 
to develop a distributed application from a scratch. To solve these difficulties, ADViCE 

37 



Table 5 ,     , t   ,        3 
Performance comparison of the linear equation solver application for each software development phase 

p4 ADViCE 

Phase LU INV MULT.V LU INV        MULT-V 

Design and development 838 min.   1314 min. 862 min.   2.10 min. 1.57 min. 2.30 min. 
(419 lines) (657 lines) (431 lines) 

Compilation 6.45 sec.   8.10 sec.   7.01 sec.   0 sec.      0 sec.       0 sec. 
Runtime setup 1.200 sec. 1.580 sec. 0.980 sec. 0.043 sec 
Task execution 0.386 sec. 0.556 sec. 0.194 sec. 0.801 sec.1.360 sec.0.140 sec 

Application execution                      1-691 sec.                                 1-451 sec. 
Application visualization 3200 sec. 0-140 sec"  

provides an integrated problem solving environment to enable novice users to develop 
large-scale, complex, distributed applications using ADViCE tasks. The Linear Equation 
Solver (LES) application has been selected as a running example. Figure 12 shows the 
AFG of the Linear Equation Solver, which consists of an LU Decomposition (LU) task, 
two Matrix Inversion (INV) tasks and Matrix-Vector Multiplication (MULT.V) tasks. 
The problem size for this experiment is 1024 x 1024 and its execution environment con- 
sists of four nodes, which are SUN SPARCs and IBM RS6000 machines that are connected 

by an ATM network. 

Table 5 compares the timing of several software phases for the Linear Equation Solver 
application using p4 and ADViCE. When a user has enough knowledge about parallel pro- 
gramming and the p4 tool, he/she will spend 838 minutes for an LU task, 1314 minutes 
for an INV task, and 862 minutes for MULT.V task. The total time to develop this appli- 
cation is approximately 3014 minutes, (i.e., around 50 hours). Using ADViCE, a novice 
user spends around six minutes to develop such an application. There is no compile time 
in ADViCE, but a p4 application needs 21 seconds for compilation. The ADViCE setup 
time for a Linear Equation Solver application is 0.043 seconds. The P4 user should create 
all procgroup files and launch them in order, which takes around eight seconds. 

Since the ADViCE is based on the data flow model and executes the application tasks 
concurrently, the application execution time, including the setup time, is less than the 
summation of all the individual task execution times. In our experiment with the Linear 
Equation Solver application, the total execution time of the p4 implementation using four 
nodes is 1.691 seconds. The ADViCE implementation of the same application with the 
same configuration is approximately 1.451 seconds. 

6.3   Experiment 3: Evaluation of the ADViCE Adaptation Approach 

One of the main features of the ADViCE prototype is its transparent adaptation support. 
In this experiment, we evaluate the performance of the ADViCE prototype to develop a 

3The last two rows of the table are for the total time of the application. 
4It is the total setup time for a ADViCE-based linear equation solver application. 
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fault tolerant distributed application that is shown in (Figure 21). 

B-mEiMt«M**»l^K<eeHK^^ 
SYSTEM    EDIT:  EXECUTE > VISUALIZE   fllEModule:  Elementary .Special   Matrix   :Oata_Bnalysls 

polynomial/Interpolation    Miscellaneous 

Figure 21: An Example of Fault Tolerant Distributed Application. 

After a user develops an application using the ADViCE Application Editor window 
(AES) and specifies that the application tasks should tolerate link and machine failures. 
During the application execution, we manually kill the process running one of the applica- 
tion tasks, say the INV task, as shown in Figure 21. The INV task failure is immediately 
detected by the Local ACS that continuously monitoring the execution of the of the INV 
task (Step 1 in Detection and Analysis Phase of Figure 22). The error message is reported 
to the Server ACS running on the CMS (Step 1' and Step 2). The next step is to invoke 
the Verification_Analysis_ADS procedure that is running on the Server ACS of the CMS 
(Step 3) that determines that the EventCause is "Task down" (Step 15 in the Verifi- 
cation_Analysis_A.DS of Figure 16. Once that is determined, the Adaptation_Plan_ADS 
procedure is invoked. A simple recovery procedure could be to restart all the application 
tasks (LU, INV, and MULT.V). This recovery procedure involves invoking the ARS to 
reschedule resources to the application (see step 1 in Adaptation Phase of Figure 22). 
Once the ARS schedules the application tasks and passes it to the Server ACS (Step 2), 
the Server ACS setups the new application execution environment by starting the Local 
ACS on each machine selected to run the application (Step 3). Once that is done, the 
Local ACS starts the task execution on its machine (Step 4). 

The performance of the adaptation algorithm depends on the the Change Detection 
Time (CDT), Verification and Analysis Time {VAT), and Adaptation Plan Time {APT). 
The CDT measures the time it takes ADViCE to detect the change event in any of 
ADViCE services. The VAT measures the time it takes ADViCE to verify the change 
event and determine its cause type.   The APT measures the time it takes ADViCE 
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Detection and Analysis 

Adaptation 

Figure 22: An Example of the ADViCE Adaptation Algorithm. 

to perform the operations specified in the adaptation plan associated with the affected 
service. For the example shown in Figure 22, the CDT is 7.675 seconds, VAT is 5.328 
seconds and APT is 18.451 seconds. We are currently evaluating different techniques to 
achieve efficient implementations of all the procedures identified in the three phases of 
the ADViCE adaptation algorithm. 

7    Conclusion 

We have presented the design and evaluation of the Virtual Distributed Computing En- 
vironment (VDCE) and the Adaptive Distributed Virtual Computing Environment that 
have been developed at Syracuse University and the University of Arizona. 

The VDCE consists of three main modules: Application Editor, Application Sched- 
uler, and VDCE Runtime System. The Application Editor provides users with all the 
software tools and library functions required to develop a VDCE application. The main 
function of the Application Scheduler is the initial task-to-resource mapping and any nec- 
essary dynamic rescheduling. The VDCE Runtime System is based on the Control Virtual 
Machine (CVM) and the Data Virtual Machine (DVM). CVM provides a seamless inter- 
connection of the resources and monitors the resources. DVM enables a high-performance 
communication medium among the application tasks. 
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We have successfully implemented a proof-of-concept prototype that supports all 
major components of the VDCE architecture. We are currently working on extending the 
current prototype in several ways: a) develop and implement an application programming 
interface (API) that enables users to add VDCE library tasks; b) add more sites to increase 
the computing services offered by VDCE; and c) develop and integrate mobile computing 
technology into VDCE so that users can access VDCE resources using mobile hosts and 
mobile interconnection networks. 

We have also extended the VDCE prototype to support mobile computing and com- 
munication resources by developing the ADViCE prototype. The ADViCE consists of 
two main servers: Visualization and Editing Server (VES) and Control and Management 
Server (CMS). These two servers provide all the services required to develop parallel 
and distributed applications, run, control, manage, and visualize the execution of these 
applications. We have successfully implemented a proof-of-concept prototype of the AD- 
ViCE architecture that provides most of the ADViCE services. We also presented our 
experimental results and evaluation of the utility of the services supported by the AD- 
ViCE prototype to achieve efficient and seamless parallel and distributed programming 
environment. We are currently extending the capabilities of ADViCE to provide efficient 
adaptive scheduling algorithms and proactive management services. 

We are currently investigating efficient techniques to achieve proactive control and 
management of all services offered by ADViCE that will include transparent performance, 
fault-tolerance, and security services for ADViCE applications/users. 
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